Constraints on signaling networks logic reveal functional subgraphs on Multiple Myeloma OMIC data

Bertrand Miannay

Team MeForBio, LS2N Team 11, CRCINA Nantes, France

PhD supervisor : Olivier Roux (LS2N, Nantes) Co-supervisors : Stéphane Minvielle (CRCINA, Nantes), Carito Guziolowski (LS2N, Nantes), Florence Magrangeas (CRCINA, Nantes)

August 20, 2017

Bertrand Miannay

August 20, 2017 1 / 26

<ロ> <同> <同> < 三> < 三> <三> 三日 のQ()

Context

Summary

Context

Method

Overview

- Formalism and implementation
- Components analysis
- Space solution reduction

Application

- Data and regulatory network
- Perfect colorations generation
- Components analysis

Conclusion & perspective

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < ()

Context

Historical

- Genes expression measure :
 - Decrease of cost/time during last 2 decades.
 - Used to compare expression profiles[LG06, PJvdR⁺99].
- Biological knowledge :
 - Increase of knowledge on interactions between biological entities and their roles.
 - Formalization in databases (KEGG, GO, NCI-PID, CBN, etc.).

Accumulated regulatory knowledge and experimental observations.

Modelization

- Used for cellular phenomenas study [KDS⁺16], disease research [LLX⁺13, Nev01], bio-production optimization[Ate15], etc.
- Cannot work with large amounts of data due to "natural noise".
- Need pre-selection of data.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ⊨ ◆ ○ ◆ ○

Method

Summary

Context

2 Method

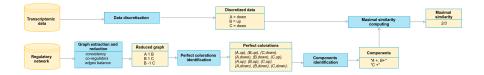
Overview

- Formalism and implementation
- Components analysis
- Space solution reduction

Application

- Data and regulatory network
- Perfect colorations generation
- Components analysis

Conclusion & perspective

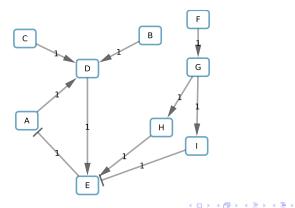

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < ()

Specificity

- Identification of sub-set of data using biological interactions.
- Based on graph coloring approaches [TCSR⁺15].
- Integrate activation and inhibition interactions in the regulatory network.
- Research of the "perfect colorations".
- Implemented in ASP (Answer Set Programming).

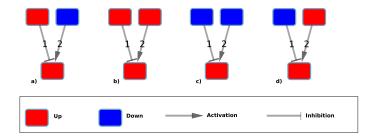
Input/output

- From a regulatory network ⇒ The entities strongly associated merged in components
- From a set of observations ⇒ Measurement of the maximal similarity with the "perfect configurations" of the components.


◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ⊨ ◆ ○ ◆ ○

Instanciation

Graph: Set of oriented, signed (activator or inhibitor), weighted edges between nodes **Target**: A node with at least, one predecessor (or regulator).


Candidate solutions generation

Colored graph : A graph in which each node is associated to a sign: up or down

Constraints

Consistent target coloring : A colored target, which is explained by at least one predecessor's coloration. Perfect target coloring : A colored target, which is explained by all predecessor's coloration. Imperfect weighted regulator : Weight of the edge between an imperfect target and its inconsistent regulator.

	а	b	с	d
Consistent node coloring	x	 Image: A second s	×	 Image: A second s
Perfect target coloring	x	x	x	 Image: A second s
Imperfect weighted regulator	3	1	2	0

Optimization

- 1: Consistency maximization: Colored graphs with the maximal number of consistent targets.
- 2: Perfect target coloring maximization: Colored graph with the maximal number of perfect targets.
- 3 : Imperfect weighted regulator minimization : Colored graphs with the minimal sum of imperfect weighted regulator

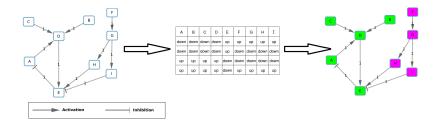
Result

Set of perfect colorations

node	А	в	с	D
coloration 1	up	up	up	down
coloration 2	up	down	down	up
coloration 3	down	up	up	down
coloration 4	down	down	down	up

Components identification

Component : set of nodes with correlated (positive or negative) coloration in perfect solutions.


Example

When B is up (down), C is up (down) too \Rightarrow Positive correlation. When B is up (down), D is down (up) \Rightarrow Negative correlation. Component syntax : "B +, C +, D -"

Maximal similarity computing

Component configurations : Two possibilities of colorations for a component.

Maximal similarity (MS) : For a set of observation (nodes associated to signs) and a component : the maximal percentage of observed nodes in the component with the same sign as in the configurations.

Toy example

Configuration : Component : "A +,B +,C +,D +,E -"

- (A,up), (B,up), (C,up), (D,up), (E,down)
- (A,down), (B,down), (C,down), (D,down), (E,up)

```
Observations : (B,up), (C,up), (D,up), (E, up)
MS = \frac{3}{4}
```

Coloring property

Symmetric reduction : A colored graph and its reverse coloring ($up \iff down$) have the same optimization scores.

Topological property

Consistent coloring : Identification of nodes which will have a sign correlation in consistent solutions (Figure 1-a) **Imperfect coloring :** Identification of nodes which will have a sign correlation in candidate solutions with minimized imperfect colorations (Figure 1-b)

Edges balance : Deletion of balanced edges (Figure 1-c)

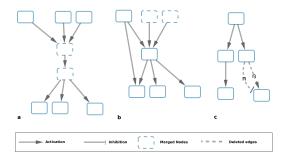


Figure : Patterns searched by the 3 reductions methods used in this study. a : nodes correlated in consistent solution. b : nodes correlated sharing the same target. c : edges with same weight, root, target and opposite signs.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < ()

Application

Summary

Context

2 Method

Overview

- Formalism and implementation
- Components analysis
- Space solution reduction

Application

- Data and regulatory network
- Perfect colorations generation
- Components analysis

Conclusion & perspective

1 = 9QC

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Context

• Analysis of genes expression data from Multiple myeloma patients with regulatory network.

Data

Gene expression profiles (GEP) from :

- 602 multiple myeloma patients (myeloma cells : MC)
- 9 healthy donors (normal plasma cells : NPC).

Identification for each GEP of the over-expressed (up) and under-expressed (down) genes.

Regulatory network

From Pathway Interaction database (PID)

 Extraction of the downstream events from three signaling pathways (IL6/IL6-R, IGF1/IGF1-R and CD40) [KIe10] to the variant genes

Generation of an induced subgraph from NCI-PID, containing 2269 nodes, 2683 edges and connecting 529 variant genes.

ELE NOR

イロト イポト イヨト イヨト

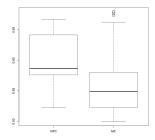
Graph reduction

- Consistent coloring, Imperfect coloring, Edges balance reductions
- New graph with 193 nodes 389 edges

Table : Computation time.

Graph	number of nodes	number of edges	time
Generated graph	2269	2683	72',12"
Reduced graph	193	389	14"

Perfect solutions and components identification


- 16834 perfect colorations.
- 15 components identified from the regulatory network.
- Only 2 components (2 and 6) include more than one gene.

1= 990

イロト イポト イヨト イヨト

Components validation and specification

- Computing then comparison between *MS^{MC}* and *MS^{NPC}* for each component.
- Validation by comparing with MS from random data.
- Only component 2 is statistically different between MC and NPC.

Biological analysis : gene ontology

- Genes in the component 2 (167 genes) are strongly associated to cancer pathways (apoptotic process).
- Genes in the component 6 (349 genes) are not associated to specific pathway.
- Genes in the graph (529 genes) and all variant genes (12410 genes) are not associated to specific pathway.

Bertrand Miannay

Summary

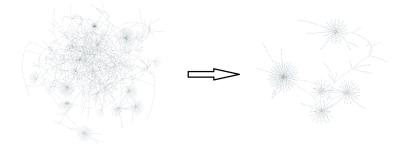
Context

2) Method

Overview

- Formalism and implementation
- Components analysis
- Space solution reduction

Application


- Data and regulatory network
- Perfect colorations generation
- Components analysis

4 Conclusion & perspective

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < ()

Conclusion

- Identification of functional subgraphs/components from a regulatory network based on perfect colorations.
- Estimation of deregulation for each components from dataset based on similarity with perfect colorations.

Perspective

- Comparison with other pathways analysis methods.
- Use other database (trrust, causal bionet, etc.)
- Improve topological reduction.
- Integration of continuous data.

Thanks for your attention

bertrandmiannay@gmail.com

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < ()

Références

Références I

Ozlem Ates.

Systems Biology of Microbial Exopolysaccharides Production. Frontiers in bioengineering and biotechnology, 3:200, 2015.

Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling. FEBS Journal, 283(2):350–360, jan 2016.

Bernard Klein.

Positioning NK-kappaB in multiple myeloma. Blood, 115(17):3422–4, April 2010.

Tim Lenoir and Eric Giannella.

The emergence and diffusion of DNA microarray technology. Journal of biomedical discovery and collaboration, 1(1):11, jan 2006.

Topologically inferring risk-active pathways toward precise cancer classification by directed random walk. Bioinformatics (Oxford, England), 29(17):2169–77, September 2013.

J R Nevins.

The Rb/E2F pathway and cancer. Human molecular genetics, 10(7):699–703, apr 2001.

C M Perou, S S Jeffrey, M van de Rijn, C A Rees, M B Eisen, D T Ross, A Pergamenschikov, C F Williams, S X Zhu, J C Lee, D Lashkari, D Shalon, P O Brown, and

D Botstein.

Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 96(16):9212–7, aug 1999.

Sven Thiele, Luca Cerone, Julio Saez-Rodriguez, Anne Siegel, Carito Guziołowski, and Steffen Klamt.

Extended notions of sign consistency to relate experimental data to signaling and regulatory network topologies. BMC bioinformatics, 16(1):345, jan 2015.

E SOA

イロト イポト イヨト イヨト

Summary

5 Validation & specificity

6 GO-results

Components interactions

◆□◆ ▲□◆ ▲田◆ ▲□◆ ▲□◆

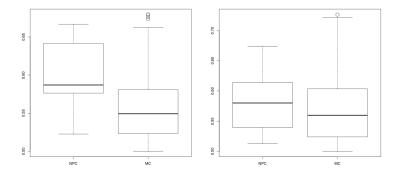


Figure : MS comparison for component 2 (left) and 6 (right).

Component	# Nodes	# Genes	Validation p-value	Specificity p-value		
C ²	422	167	8,904e-03	0.019		
<i>C</i> ⁶	1832	349	7.91e-05	0.573		
			< ۵		∃▶ ∃⊫ �¢	20

Summary

5 Validation & specificity

Components interactions

August 20, 2017

20 / 26

Bertrand Miannay

Table : 5 first results of the Gene Ontology Enrichment Analysis for the component C^2 .

GO biological process	found	expected	Fold En- richment	P-value
regulation of cell death	75	11.98	6.26	6.46E-37
regulation of pro- grammed cell death	73	11.21	6.51	8.33E-37
regulation of apoptotic process	72	11.11	6.48	4.90E-36
single-organism cellu- lar process	149	77.70	1.92	9.90E-28
positive regulation of metabolic process	87	24.50	3.55	7.81E-26

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Table : 5 first results of the Gene Ontology Enrichment Analysis for the component C^6 .

GO biological process	found	expected	Fold En- richment	P-value
response to organic substance	182	42.74	4.26	1.02E-68
response to chemical	203	64.12	3.17	2.13E-57
response to oxygen- containing compound	129	23.26	5.55	1.32E-56
positive regulation of biological process	233	88.29	2.64	1.39E-55
regulation of cell prolif- eration	132	25.67	5.14	1.98E-54

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Table : 5 first results of the Gene Ontology Enrichment Analysis for the 529 genes integrated in the graph.

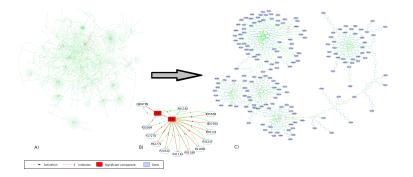
GO biological process	found	expected	Fold En- richment	P-value
positive regulation of biological process	368	137.60	2.67	6.53E-94
positive regulation of cellular process	346	122.38	2.83	2.02E-91
positive regulation of metabolic process	285	80.69	3.53	3.06E-90
positive regulation of cellular metabolic pro- cess	271	75.30	3.60	6.04E-86
response to organic substance	259	68.79	3.77	4.85E-85

(日)

Table : 5 first results of the Gene Ontology Enrichment Analysis for all the variant genes (21002).

GO biological process	found	expected	Fold En- richment	P-value
biological process	11199	10256.18	1.09	2.69E-123
cellular process	9925	8845.71	1.12	2.22E-105
cellular metabolic pro- cess	6101	5303.88	1.15	2.77E-43
biological regulation	7805	7018.07	1.11	5.08E-43
regulation of biological process	7404	6658.81	1.11	1.13E-37

(日)


Summary

5 Validation & specificity

◆□ → ◆□ → ◆目 → ◆□ → ◆□ →

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bertrand Miannay