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1 École Centrale de Nantes, IRCCyN UMR CNRS 6597, Nantes, France.
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Figure 1 : Example of graphs extracted from PID

Biological context
Multiple Myeloma (MM) is an incurable haematological malignancy cancer ; representing 1%
of cancer, and 2% of the associated mortality. This disease is particularly aggressive and the
current treatments can’t ensure the survival of patients.

Our aim is to better understand mechanisms of dysregulation phenomena by comparing
cancer cells expression profiles with the regulation network of a normal cell.

In this work, we studied gene expression data from 611 individuals (9 healthy donors, 602
MM) and their consistency with a large-scale causal network of signaling and transcriptional
events[1]

Constraint based model : Confrontation between the data and
the regulatory network [2]

Data : over-expressed (+), under-expressed (-), invariant (0)

Regulatory network : a simple and signed directed graph {+,-}
Experimental data : for each node, three possible colors : +, -, 0

Consistency rule : each node variation (+ or -) has to be explained by, at least, one of its
predecessor variation

Figure 2 : Examples of consistency and inconsistency between the graph and the data

If network is inconsistent with experimenta data, then correction by adding Minimal
Correction Sets (MCOS) [3]

Figure 3 : Example of MCOS and predictions with two colorations

Methods and tools
Data discretization

Discretization with a two fold relative to healthy donors for variant genes (over/under-expressed)
Discretization with a 0.02 fold for invariant genes

Graph
Source : Pathway Interaction Database (PID-NCI) [4]
Subgraph extraction,downstream events from three proteins ( IL6, IGF1 et CD40) to all variants genes by the shortests paths
Compaction of the subgraph to reduce the order while maintaining dependencies

Prediction of nodes’ signs
Implementation : Constraint logic programming (Answer Set Programming) : Iggy a

Exhaustive exploration of all graph coloring (associate a sign to a node in the graph)
Determination of the MCOS to restore the consistency
Intersection of all consistent graphs coloring
Prediction of the signs of each node in the graph with the observed data (signed genes) : +, -, 0, Change {+,-}, not+ {0,-} or
not- {+,0}

Predictions’ validation :
50% of measured genes {+,-,0} used to predict the other half for each individual
Comparison between measured and predicted data

Computation of the prediction’s precision : Precision =
|True prediction|
|all predictions|

Comparison with precisions from permuted data (randomized data)

Figure 4 : Method Pipeline

a. Thiele, S. (2014). iggy-0.4 : a tool for consistency based analysis of influence graphs and observed systems behavior

Results & Discussions
Discretization

Between 48-214 measured genes for each individual in PID
Identification of 17404 variant genes associated to 51596 proteins

Measured genes before PID mapping after PID mapping
healthy (9) MM (602) healthy (9) MM (602)

signed “+” 12 % 27 % 13 % 31 %
signed “-” 8 % 44 % 6 % 49 %

signed “0 ” 80 % 29 % 81 % 20 %
total 59507 5867413 482 60532

Table 1 : Proportion and number of signs for healthy and MM

Graph
First generated graph with 2031 nodes and 2414 edges
Compacted graph with 538 nodes for 703 edges
It contains 476 genes of 634 in PID
It contains known proteins in signaling pathways : NFκB, MAP-kinase, AKT3 [5]
only 3 roots ( IL6, IGF1 et CD40) are fixed, independently of patients → Interpatient heterogeneity is reduced

Prediction of nodes’ signs
Decision tree with predictions separates healthy and MM with 4 nodes : FOXA1 (in nucleus), CSF1R, VGFR1 and
phosphorylated RB1-TFDP1 complex (Figure 5, left)

Predictions’ validation :
Precisions with real data are better than 87 to 100 % of randomized data precisions (Figure 5, right)
Precisions’ predictionsreal data > Precisions’ predictionsrandomized data : pvalue < 10−57

Figure 5 : left : Decision tree with predictions
right : Precisions distribution with real and permuted data

Conclusions
Graph :

PID seems appropriate for our analysis, but it is not updated since 2012 and contains only a small portion of measured data
Our approach allows to connect important signaling transcription paths to variants genes [5]

Predictions
Able to deduce node’s sign from partial informations
Currently, our method is unable to identify most informative nodes (key nodes) : those that, if perturbed, will generate
different predictions profiles

Biological conclusions
We are able to deduce conditions of genes, proteins and complexes from transcriptomic informations
Identification of specific conditions of proteins for phenotypes

Further work
Add more regulatory knowledge (other databases) and improve graph generation by using other paths search
Use classification approach to identify subtypes of MM [6]
Identify key nodes correlated to patient’s prognosis : subset of signature nodes which are characteristic of a cancerous state
or a resistance phenotype [7]
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