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FIGURE 1 : Example of graphs extracted from PID

Biological context | |
Results & Discussions

Multiple Myeloma (MM) is an incurable haematological malignancy cancer; representing 1%

of cancer, and 2% of the associated mortality. This disease is particularly aggressive and the o Discretization

@ Between 48-214 measured genes for each individual in PID

current treatments can't ensure the survival of PatientS. o Identification of 17404 variant genes associated to 51596 proteins
Our aim is to bette-r undersftand .mechanlsms of dysregulation phenomena by comparing Veasured genes| before PID mapping | after PID mapping
cancer cells expression profiles with the regulation network of a normal cell. healthy (9) | MM (602) | healthy (9) | MM (602)
signed “+" 12 % 27 % 13 % 31 %

In this work, we studied gene expression data from 611 individuals (9 healthy donors, 602 signed " 8 % 44 % 6 % 49 %

- - - _ - - . signed “0 " 80 % 29 % 81 % 20 %
MM) and their consistency with a large-scale causal network of signaling and transcriptional — co507 | ERe713 556055
events[l] ) TABLE 1 : Proportion and number of signs for healthy and MM
Constraint based model : Confrontation between the data and -

@ Grap

the regu |atory netWOrk [2] @ First generated graph with 2031 nodes and 2414 edges

@ Compacted graph with 538 nodes for 703 edges
@ It contains 476 genes of 634 in PID
e It contains known proteins in signaling pathways : NFxKB, MAP-kinase, AKT3 [5]

o Data : over-expressed (+), under-expressed (-), invariant (0)

o Regulatory network : a simple and Sigﬂ@d directed gra ph {—i—,—} e only 3 roots ( IL6, IGF1 et CD40) are fixed, independently of patients — Interpatient heterogeneity is reduced
o Experimental data : for each node, three possible colors : +, -, 0 @ Prediction of nodes’ signs

. ] - - : . @ Decision tree with predictions separates healthy and MM with 4 nodes : FOXA1 (in nucleus), CSF1R, VGFR1 and
o Consistency rule : each node variation (+ or -) has to be explained by, at least, one of its shosphorylated RBL.TFDP1 complex (Figure 5, left)

redecessor variation o
P @ Predictions’ validation :

@ Precisions with real data are better than 87 to 100 % of randomized data precisions (Figure 5, right)
() o Precisions’ predictions,..; 4.., > Precisions’ predictions, ,, jomied dats - Pvalue < 107>
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FIGURE 2 : Examples of consistency and inconsistency between the graph and the data i

120

100

80

VGFR1 € { Not-,+}

o If network is inconsistent with experimenta data, then correction by adding Minimal
Correction Sets (MCQOS) [3] ;-
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FIGURE 5 : left : Decision tree with predictions
MethOdS d nd tOOlS right : Precisions distribution with real and permuted data

e Data discretization

@ Discretization with a two fold relative to healthy donors for variant genes (over/under-expressed) "
@ Discretization with a 0.02 fold for invariant genes CO”C' USIONS

20

e Graph :

@ PID seems appropriate for our analysis, but it is not updated since 2012 and contains only a small portion of measured data
@ Our approach allows to connect important signaling transcription paths to variants genes [5]

e Graph
@ Source : Pathway Interaction Database (PID-NCI) [4]
@ Subgraph extraction,downstream events from three proteins ( IL6, IGF1 et CD40) to all variants genes by the shortests paths

@ Compaction of the subgraph to reduce the order while maintaining dependencies B fene

e Prediction of nodes’ signs @ Able to deduce node’s sign from partial informations
@ Implementation : Constraint logic programming (Answer Set Programming) : lggy? @ Currently, our method is unable to identify most informative nodes (key nodes) : those that, if perturbed, will generate
@ Exhaustive exploration of all graph coloring (associate a sign to a node in the graph) different predictions profiles

@ Determination of the MCOS to restore the consistency

@ Intersection of all consistent graphs coloring

e Prediction of the signs of each node in the graph with the observed data (signed genes) : +, -, 0, Change {+,-}, not+ {0,-} or
not- {+,0}

e Biological conclusions
@ We are able to deduce conditions of genes, proteins and complexes from transcriptomic informations
o |dentification of specific conditions of proteins for phenotypes

e Further work
@ Add more regulatory knowledge (other databases) and improve graph generation by using other paths search
@ Use classification approach to identify subtypes of MM [6]
@ ldentify key nodes correlated to patient’s prognosis : subset of signature nodes which are characteristic of a cancerous state
or a resistance phenotype [7]

e Predictions’ validation :

@ 50% of measured genes {+,-,0} used to predict the other half for each individual

@ Comparison between measured and predicted data
| True prediction|

all predictions|
e Comparison with precisions from permuted data (randomized data)

e Computation of the prediction's precision : Precision
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