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Multiple Myeloma

Neoplasm of plasma cells.

1% of cancers in France.

Incurable disease despite considerable progress in treatment.

Characterized by a profound intra- and inter-individual
heterogeneity[Magrangeas et al., 2013].

Need to optimize discovery of clinically relevant anti-MM agents.
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Transcriptomic data

Genes expression profiles generated :
Using Affymetrix Human Exon1.0 chips.
With 50ng total RNA from highly purified bone marrow CD138+
plasma cells.
Otained from MM patients of the IFM (Intergroupe Francophone
du Myélome) centers and healthy donors .

Data from 611 individuals.
9 Normal Individuals (NI).
602 patients with Multiple Myeloma (MM).

Discretization to identify variant (over/under-expressed) and
unvariant genes with respect to NI
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Regulatory networks

PID-NCI (Pathway Interaction Database) [Schaefer et al., 2009]
18154 nodes (proteins, genes, complexes, transcription, reaction,
etc.) and 29936 edges (activation, inhibition, complexation, etc.)
634 genes (with transcription events upstream)
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Aims

Confront regulatory networks with logical reasoning to expression
profiles.

Infer specific molecular profiles among MM patients.

Identify therapeutic targets.

Identifye key nodes’ and their up/down-regulation.
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Graph’s coloration

Confrontation between graph’s topology and observations
[Guziolowski et al., 2012]

Input :
Simple oriented graph {+, -}
Observations data : +, -, 0

Output :
Unobserved nodes’ coloration : +,-,0
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Consistency rules

All inputs (nodes without predecessor) are consistent
Variant nodes (+,-) have to be explained by, at least, one
predecessor
Unvariant nodes (0) have to be explained by :

Unvariant predecessors
Two opposite predecessors : One activator and one inhibitor
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Example 1

One graph with 3 nodes and 2 edges

1 observation : A = +
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Example 1

Instanciation of all graph’s colorations :
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Example 1

Reduction with the observed data (A = + ) :
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Example 1

Reduction with consistency rules :

B can be predicted as “-” and C as “+”
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Example 2

A graph with 3 nodes, 2 edges

2 observations : B,C = +
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Example 2

Instanciation then reduction with observed data :
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Example 2

Reduction with consistency rules : Empty solution

Correction by adding influence : |mcos|= 1 1

A can be predicted as + or - ⇒ “CHANGE”

1. MCOS : minimal correction set
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Graph generation and predictions

Analysis with the 611 individuals with IGGY [Thiele et al., 2015]
(Answer Set Programming)
Generation of a graph from PID :

Method : Connecting the myeloma cell survival, proliferation and
drug resistance factors( IL6, IGF1 et CD40)[Klein, 2010] to variant
genes by shortest paths
Result : Graph with 621 nodes and 805 edges

Contains 557 genes

Predictions after correction of nodes’ signs for each patient
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Graph generation and predictions

Signs Observed Predicted
NI (9) MM (602) NI (9) MM (602)

+ 34 % 38 % 26 % 40 %
- 34 % 51% 26 % 35 %
0 32 % 11 % 24 % 4 %
Change 0 % 0 % 7 % 8 %
Not+ 0 % 0 % 2 1 %
Not- 0 % 0 % 3 % % < 1 %
? 0 % 0 % 13 % 12 %
total 2195 (244) 222299 (369) 5589 (377) 373842 (252)
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How to compare predicted value

Couple representation (node,sign) : 621x3 variables

prediction (node,+) (node,-) (node,0)
+ 1 0 0
- 0 1 0
0 0 0 1
CHANGE 1 1 0
Not+ 0 1 1
Not- 1 0 1
? 1 1 1

TABLE : Table of association between signs’ projections and couples
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Prediction analysis : Supervised learning

FIGURE : Supervised learning between NI and MM
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Prediction analysis : Frequency analysis

node sign Frequency NI Frequency MM p.val (fisher)
FOXM1*[c] - 0,222 0,776 0,0008
RB1/E2F1-3/DP[n] + 0,333 0,829 0,0015
STAT-6[c] - 0,333 0,822 0,0018
JNK family activity - 0,444 0,885 0,0019
IL23 pathway - 0,444 0,8787 0,0025

TABLE : Top 5 : Frequency results analysis
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Conlusion

Method :
Merge informations from expression data and regulatory network.
Deduct new informations from those data : Nodes and their sign.
Characterize distinct groups :

Identify Key nodes.

In progress :
Simulation of therapeutic target effectiveness.
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